Inexact GMRES for singular linear systems

نویسندگان

  • Xiuhong Du
  • Daniel B. Szyld
  • XIUHONG DU
  • DANIEL B. SZYLD
چکیده

Inexact Krylov subspace methods have been shown to be practical alternatives for the solution of certain linear systems of equations. In this paper, the solution of singular systems with inexact matrix-vector products is explored. Criteria are developed to prescribe how inexact the matrix-vector products can be, so that the computed residual remains close to the true residual, thus making the inexact method of practical applicability. Cases are identified for which the methods work well, and this is the case in particular for systems representing certain Markov chains. Numerical experiments illustrate the effectiveness of the inexact approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GGMRES: A GMRES--type algorithm for solving singular linear equations with index one

In this paper, an algorithm based on the Drazin generalized conjugate residual (DGMRES) algorithm is proposed for computing the group-inverse solution of singular linear equations with index one. Numerical experiments show that the resulting group-inverse solution is reasonably accurate and its computation time is significantly less than that of group-inverse solution obtained by the DGMRES alg...

متن کامل

Accelerated Inexact Newton Schemes for Large Systems of Nonlinear Equations

Classical iteration methods for linear systems, such as Jacobi iteration, can be accelerated considerably by Krylov subspace methods like GMRES. In this paper, we describe how inexact Newton methods for nonlinear problems can be accelerated in a similar way and how this leads to a general framework that includes many well-known techniques for solving linear and nonlinear systems, as well as new...

متن کامل

Breakdown-free GMRES for Singular Systems

GMRES is a popular iterative method for the solution of large linear systems of equations with a square nonsingular matrix. When the matrix is singular, GMRES may break down before an acceptable approximate solution has been determined. This paper discusses properties of GMRES solutions at breakdown and presents a modification of GMRES to overcome the breakdown.

متن کامل

Gmres on (nearly) Singular Systems

We consider the behavior of the GMRES method for solving a linear system Ax = b when A is singular or nearly so, i.e., ill conditioned. The (near) singularity of A may or may not affect the performance of GMRES, depending on the nature of the system and the initial approximate solution. For singular A, we give conditions under which the GMRES iterates converge safely to a least-squares solution...

متن کامل

A Modiication to the Gmres Method for Ill-conditioned Linear Systems

This paper concerns the use of a method for the solution of ill-conditioned linear systems. We show that the Generalized Minimum Residual Method (GMRES) in conjunction with a truncated singular value decomposition can beused to solve large nonsymmetric linear systems of equations which are nearly singular. Error bounds are given for the right s i n g u l a r v ectors and singular values compute...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007